Mencerna apa yang dimakan, menyaring menjadikannya nutrisi, nutrisi kehidupan^^v

Bismillah...proses belajar yang terus-menerus, seharusnya menjadikan diri semakin produktif, insya Alloh...
Tampilkan postingan dengan label ipa. Tampilkan semua postingan
Tampilkan postingan dengan label ipa. Tampilkan semua postingan

Senin, 26 April 2010

praktikum BU PEDUK

Praktikum akan diadakan jam 11 SELASA 27 APRIL 2010
1. kompor aja tiap kelas 4 buah
2. jajanan pasar dan snack kecil2an
3. peralatan masak misal panci dan serok atau apalah, kita mau masak gethug,,, telo ne mpun ada
4. bahan masakan misal sayuran atau apalah


poin untuk praktikum:
5 zat pengawet makanan


PENDAFTARAN pembawa kompor dilayani hari ini ke 085647390439,,,

sekian

Minggu, 25 April 2010

APA IPA ??

PEMBANGKIT TENAGA LISTRIK


Astraksi: Paper ini berkaitan dengan pembahasan mengenai perencanaan pengembangan pembangkit tenaga listrik sesuai dengan kebutuhan yang meningkat dan pengaruh terhadap lingkungan yang ada. Disini terdapat beberapa Pembangkit Tenaga listrik yang terus diperbaiki, serta beberapa pembangkit tenaga alternatif untuk mengurangi efek dari pembangkit tersebut terhadap lingkungan. Pembangkit tenaga listrik yang ada disini adalah beberapa pembangkit dengan tenaga yang ada banyak diindonesia.

PENDAHULUAN
Sejarah Ketenagalistrikan di Indonesia dimulai pada akhir abad ke-19, ketika beberapa perusahaan Belanda mendirikan pembangkit tenaga listrik untuk keperluan sendiri. Pengusahaan tenaga listrik tersebut berkembang menjadi untuk kepentingan umum, diawali dengan perusahaan swasta Belanda yaitu NV. NIGM yang memperluas usahanya dari hanya di bidang gas ke bidang tenaga listrik.
Konsumsi listrik Indonesia secara rata rata adalah 473 kWh/kapita pada 2003. Angka ini masih tergolong rendah dibandingkan rata rata konsumsi listrik dunia yang mencapai 2215 kWh/kapita (perkiraan 2005). Dalam daftar yang dikeluarkan oleh The World Fact Book, Indonesia menempati urutan 154 dari 216 negar.
Karena terus meningkatnya konsumsi listrik disetiap daerah, hal ini merupakan suatu motivasi penting untuk bisa mengembangkan pembangkit listrik diindonesia.
Menyoroti masalah ketergantungan suatu negara pada hanya satu jenis energi yang diimpor yaitu minyak. Hal ini menyebabkan terjadinya permintaan untuk pusat-pusat pembangkit tenaga listrik yang dapat mempergunakan jenis bahan bakar lain. Pada saat ini terdapat lima jenis bahan bakar untuk pembangkitan tenaga listrik, yaitu batubara, gas, hidro, nuklir dan minyak. Kemudian berkembang tuntutan-tuntutan lain, yaitu keperluan peningkatan efisiensi pembangkitan dan perlunya teknologi yang lebih bersahabat lingkungan.
Setelah pulih dari krisis moneter pada tahun 1998, Indonesia mengalami lonjakan hebat dalam konsumsi energi. Dari tahun 2000 hingga tahun 2004 konsumsi energi primer Indonesia meningkat sebesar 5.2 % per tahunnya. Peningkatan ini cukup signifikan apabila dibandingkan dengan peningkatan kebutuhan energi pada tahun 1995 hingga tahun 2000, yakni sebesar 2.9 % pertahun. Dengan keadaan yang seperti ini, diperkirakan kebutuhan listrik indonesia akan terus bertambah sebesar 4.6 % setiap tahunnya, hingga diperkirakan mencapai tiga kali lipat pada tahun 2030. Seperti terlihat pada gambar berikut:

Tentunya pemerintah pun tidak tinggal diam dalam menghadapi lonjakan kebutuhan energi, terutama energi listrik. Salah satu langkah awal yang pemerintah lakukan adalah dengan membuat blueprint Pengelolaan Energi Nasional 2006 – 2025 (Keputusan Presiden RI nomer 5 tahun 2006). Secara garis besar, dalam blueprint tersebut ada dua macam solusi yang dilakukan secara bertahap hingga tahun 2025, yaitu peningkatan efisiensi penggunaan energi (penghematan) dan pemanfaatan sumber-sumber energi baru (diversifikasi energi). Mengingat rasio elektrifikasi yang masih relatif rendah, yaitu 63 % pada tahun 2005, sedangkan Indonesia menargetkan rasio elektrifikasi 95 % pada tahun 2025.

TINJAUAN PUSTAKA
Tenaga listrik kini merupakan landasan bagi kehidupan modern, dan tersedianya dalam jumlah dan mutu yang cukup menjadi syarat bagi suatu masyarakat yang memiliki taraf kehidupan yang baik dan perkembangan industri yang maju. Dalam merencanakan suatu sistem penyediaan tenaga listrik, lokasi fisik pusat tenaga listrik, saluran transmisi dan gardu induk perlu ditentukan dengan tepat, agar dapat diperoleh suatu sistem yang baik, ekonomis dan dapat diterima masyarakat.
Berikut adalah skematis Prinsip Penyediaan Tenaga Listrik



Penyediaan tenaga listrik
Untuk sitem penyediaan tenaga listrik yang besar pada umumnya dapat disebut tiga jenis tenaga listrik, yaitu:
1.Pusat listrik tenaga air
2.Pusat listrik tenaga termal
3.Pusat listrik tenaga nuklir
Kini juga dikembangkan berbagai pusat tenaga listrik yang menggunakan jenis-jenis sumber daya energi lain, seperti angin, surya dan panas laut.

Lingkungan hidup
Pengelolaan energi dan demikian juga penyediaan tenaga listrik berpengaruh paa lingkungan hidup, dan pada gilirannya berpengaruh negatif pada mutu kehidupan. Di lain pihak, energi listrik diperlukan untuk meningkatkan taraf kemakmuran masyarakat. Tergantung dari sumber energi rimer yang dipakai, unsur-unsur pencemar lingkungan hidup yang diproduksi adalah karbondioksida (CO2), karbonmonoksida (CO), sulfurdioksida (SO2), berbagai nitrogenoksida (NOx), dan radiasi nuklir. Pencemaran-pencemaran karbondioksida dan nitrogenoksida sering dinamakan gas-gas rumah kaca (greenhouse gases) karena memberi kontribusi kepada efek rumah kaca (greenhouse gases) yang merupakan penyebab dari apa yang disebut pemanasan global (global warming).

PUSAT PEMBANGKIT DAN OPERASI EKONOMISNYA
Pusat pembangkit berfungsi untuk mengkonversikan sumber daya energi primer menjadi energi listrik. Pusat pembangkit listrik konvensional mencangkup:
1. Pusat Listrik Tenaga Uap (PLTU); minyak, gas alam, dan batubara.
2. Pusat Listrik Tenaga Air (PLTA).
3. Pusat Listrik Tenaga Gas (PLTG).
4. Pusat Listrik Tenaga Diesel (PLTD).
5. Pusat Listrik Tenaga Panas Bumi (PLTP).
6. Pusat Listrik Tenaga Nuklir (PLTN).

Di samping pembangkit listrik konvensional tersebut, saat ini tengah dikembangkan beberapa teknologi konversi untuk sumberdaya energi baru seperti: biomassa, solar, limbah kayu, angi, gelombang laut, dan sebagainya.
Pembangkit listrik melalui cara megnetohidrodinamik (MHD) pada saat ini juga sedang memasuki tahap penelitian dan pengembangan yang intensif.

Pusat Listrik Tenaga Uap (PLTU).
Pada pembangkit listrik ini, bahan baker minyak, gas alam, atau batubara dipakai untuk membangkitakan panas dan uap pada boiler. Uap tersebut kemudian dipakai untuk memutar turbin yang dikopelkan langsung dengan sebuah generator sinkron. Setelah melewai turbin, uap yang bertekanan dan bertemperatur tinggi tadi muncul menjadi uap bertekanan dan bertempratur rendah. Panas yang disadap oleh kondensor menyebabkan uap berubah menjadi air yang kemudian dipompakan kembali menuju boiler. Siklus lengkap proses ini terlihat pada gambar berikut:



sisa panas yang dibuang oleh kondensor mencapai setengah jumlah panas semula yang masuk. Hal ini mengakibatkan efisien termodinamika suatu turbin uap bernilai kecil dari 50%. Turbin uap yang modern mempunyai temperatur boiler sekitar 500 sampai 600 derajat celcius dan temperatur kondensor antara 20 sampai 30 derajat celcius.

Pusat Listrik Tenaga Gas (PLTG)
Seperti juga pada PLTD, PLTG atau turbin gas merupakan mesin dengan proses pembakaran dalam (internal combustion). Bahan bakar berupa minyak atau gas alam dibakar di dalam ruang pembakar (combustor). Udara yang memasuki kompresor setelah mengalami tekanan bersama-sama dengan bahan baker disemprotkan ke ruang pembakar untuk melakukan proses pembakaran. Gas panas hasil pembakaran ini berfungsi sebagai fluida kerja yang memutar roda turbin bersudu yang terkopel dengan generator sinkron. Generator sinkron kemudian mengubah energi mekanis menjadi energi listrik. Lihat gambar berikut:



Berbeda dengan pada PLTD, pada PLTG tidak terdapat bagian mesin yang bergerak Translasi (bolak-balik) karena itu ia merupakan mesin yang bebas dari getaran. meskipun temperatur turbin gas (1000 derajat celcius) jauh lebih tinggi daripada temperatur turbin uap (530 derajat celcius), namun efisien konversi termalnya hanya mencapai 20% - 30%. karena biaya modal yang rendah, serta biaya bahan bakar yang tinggi, maka PLTG berfungsi memikul beban puncak.

Pusat Listrik Tenaga Nuklir (PLTN)
Pada reactor air tekan (pressurized water reactor) terdapat dua rangkaian yang seolah-olah terpisah. Pada rangkaian pertama bahan baker uranium-235 yang diperkaya dan tersusun dalam pipa-pipa berkelompok, tersudut untuk menghasilkan panas dalam reactor. Karena air dalam bejana penuh, maka tidak terjadi pembentukan uap, melainkan air menjadi panas dan bertekanan. Air panas yang bertekanan tersebut kemudian mengalir ke rangkaian kedua melalui suatu generator uap yang terbuat dari baja. Generator uap menghasilkan uap yang memutar turbin dan proses selanjutnya mengikuti siklus tertutup sebagaimana berlangsung pada turbin uap PLTU.
Keuntungan reactor air tekan yang mempunyai dua rangkaian ini terletak pada pemisahan rangkaian pertama yang merupakan reactor radioaktif dari proses konversi turbin uap yang berlangsung pada rangkaian kedua. Dengan demikian, uap yang masuk ke dalam turbin dan kondensor merupakan uap bersih yang tidak tercemar radioaktif. PLTN yang mempunyai biaya modal tinggi dan biaya bahan baker rendah itu seyogyanya beroprasi untuk beban dasar (7000-8000 jam pertahun).



Pusat Tenaga Listrik Air (PLTA)
penggunaan tenaga air mungkin merupakan konversi energi tertua yang pernah dikenal manusia. perbedaan veritikal antara batas asa dengan batas bawah bendungan di mana terletak turbin air, dikenal sebagai tinggi terjun. Tinggi terjun ini mengakibatkan air yang mengalir akan memperoleh energi kinetik yang kemudian mendesak sudu-sudu turbin. Bergantung pada tinggi terjun dan debit air, dikenal tiga macam turbin yaitu:
- Pelton
- Francis
- Kalpan
Karena tidak menggunakan bahan bakar, biaya operasi PLTA sangat rendah, namun hal ini dibarengi dengan biaya investasi yang sangat tinggi untuk kontruksi pekerjaan sipilnya.
Bergantung pada ketersediaan sumber energi air, PLTA dapat berfungsi untuk memikul beban puncak ataupun beban dasar. Sebagai sumberdaya energi yang dapat pulih, sumber potensi tenaga air sangat menarik untuk dikembangkan. Tetapi pemanfaatanya secara luas sangat dibatasi oleh kondisi geografis setempat dan permasalahan lokasi yang biasanya jauh dari opusat beban. Dari 77 863 MW potensi tenaga air terbesar diseluruh Indonesia, sampai dengan periode pelita IV ini baru sekitar 2000 MW saja yang telah dimanfaatkan.
Dengan memperhatikan bahwa setiap pusat pembangkit mempunyai perbedaan yang cukup berarti dilihat dari aspek biaya modal, biaya operasi, maupun efisiensinya, maka seorang insinyur listrik harus mampu memilih alternatif susunan gabungan pembangkit (generation-mix) yang paling ekonomis untuk dioperasikan. Mengingat beban bervariasi secara ekstrem dari saat ke saat dan brsamaan dengan itu penyediaan (supply) sistem pembangkit diharapkan selalu mencukupi kebutuhan beban yang berfluktuasi tadi, maka terdapat interelasi antara parameter ekonomis pusat-pusat pembangkit dengan dinamika beban. susunan kapasitas terpasang pembangkit PLN menurut jenisnya untuk keadaaan akhir pelita IV (1988/89) terlihat pada tabel berikut:



Susunan Kapasitas Terpasang Pembangkit PLN Menurut Jenisnya untuk Keadaan Akhir Pelita IV (19988/89)

PEMBAHASAN
Pembangkit tenaga listrik dilakukan dengan berbagai aspek dan juga alternatif. Semua bahan yang digunakan sebagai pembangkit tenaga listrik pada dasarnya memiliki kelebihan dan kekurangan.

Pembangkit Listrik Tenaga Surya
Perlu dipahami, kebutuhan energi global dalam 30 tahun ke depan akan meningkat dua kali lipat per tahunnya. Pada 40 tahun mendatang, kebutuhan meningkat lagi menjadi tiga kali lipat atau setara dengan energi 20 miliar ton minyak bumi. Memang selama ini menurut Energy Information Administration (EIA) memperkirakan pemakaian energi hingga tahun 2025 masih didominasi bahan bakar fosil, yakni minyak bumi, gas alam, dan batubara. Permasalahannya yaitu menurut data Departemen ESDM juga menyebutkan, cadangan minyak bumi di Indonesia hanya cukup untuk 18 tahun kedepan, sedangkan gas bumi masih bisa mencukupi hingga 61 tahun lagi. Kemudian cadangan batubara diperkirakan habis dalam waktu 147 tahun lagi.
Salah satu langkah konkrit PLN yang akan diwujudkan hingga tahun 2009 adalah dengan membangun proyek PLTU 10.000 MW. Mungkin beberapa alasan memilih solusi ini karena selama ini kebutuhan listrik Negara 30 % disumbang oleh PLTU Suralaya yang berbahan baku batubara dan seperti yang dikemukakan diatas bahwa cadangan batubara nasional cukup tinggi. Permasalahannya adalah sumber utama penghasil emisi karbondioksida secara global, yaitu pembangkit listrik bertenaga batubara. Pembangkit listrik ini membuang energi dua kali lipat dari energi yang dihasilkan. Semisal, energi yang digunakan 100 unit, sementara energi yang dihasilkan 35 unit. Maka, energi yang terbuang adalah 65 unit! Setiap 1000 megawatt yang dihasilkan dari pembangkit listrik bertenaga batubara akan mengemisikan 5,6 juta ton karbondioksida per tahun yang merupakan salah satu gas rumah kaca penyebab global warming.
Sebagai salah satu solusi masalah energi diatas yaitu energi matahari atau tenaga surya. Energi matahari yang dipancarkan ke planet bumi adalah 15.000 kali lebih besar dibandingkan dengan penggunaan energi global dan 100 kali lebih besar dibandingkan dengan cadangan batubara, gas, dan minyak bumi. Permasalahan energi matahari ini mungkin sedikit banyak mirip dengan energi nuklir. Sebenarnya secara teknologi bangsa Indonesia sudah mampu mengelolanya. Bahkan teknologi mutakhir telah mampu mengubah 10-20 % pancaran sinar matahari menjadi tenaga surya. Secara teoritis untuk mencukupi kebutuhan energi global, penempatan peralatan tersebut hanya memerlukan kurang dari satu persen permukaan bumi, bukankah suatu hal yang efisien.
Pemanfaatan energi matahari selama ini baru digunakan sebagai pemanas air di rumah-rumah mewah maupun hotel, itupun masih produk impor. Padahal, di negara-negara Eropa utara yang relatif miskin sinar matahari, justru banyak memanfaatkan energi matahari sebagai energi terbaharukan, ramah lingkungan, dan murah.

Gambar. 2 Pemanfaat tenaga surya

Pembangkit Listrik Tenaga Angin
Angin adalah salah satu bentuk energi yang tersedia di alam, Pembangkit Listrik Tenaga Angin mengkonversikan energi angin menjadi energi listrik dengan menggunakan turbin angin atau kincir angin. Cara kerjanya cukup sederhana, energi angin yang memutar turbin angin, diteruskan untuk memutar rotor pada generator dibagian belakang turbin angin, sehingga akan menghasilkan energi listrik. Energi Listrik ini biasanya akan disimpan kedalam baterai sebelum dapat dimanfaatkan. Secara sederhana sketsa kincir angin adalah sebagai berikut :

Indonesia, negara kepulauan yang 2/3 wilayahnya adalah lautan dan mempunyai garis pantai terpanjang di dunia yaitu ± 80.791,42 Km merupakan wilayah potensial untuk pengembangan pembanglit listrik tenaga angin, namun sayang potensi ini nampaknya belum dilirik oleh pemerintah. Sungguh ironis, disaat Indonesia menjadi tuan rumah konfrensi dunia mengenai pemanasan global di Nusa Dua, Bali pada akhir tahun 2007, pemerintah justru akan membangun pembangkit listrik berbahan bakar batubara yang merupakan penyebab nomor 1 pemanasan global.
Pemanfaatan energi angin merupakan pemanfaatan energi terbarukan yang paling berkembang saat ini. Berdasarkan data dari WWEA (World Wind Energy Association), sampai dengan tahun 2007 perkiraan energi listrik yang dihasilkan oleh turbin angin mencapai 93.85 GigaWatts, menghasilkan lebih dari 1% dari total kelistrikan secara global. Amerika, Spanyol dan China merupakan negara terdepan dalam pemanfaatan energi angin.
Di tengah potensi angin melimpah di kawasan pesisir Indonesia, total kapasitas terpasang dalam sistem konversi energi angin saat ini kurang dari 800 kilowatt. Di seluruh Indonesia, lima unit kincir angin pembangkit berkapasitas masing-masing 80 kilowatt (kW) sudah dibangun.
Tahun 2007, tujuh unit dengan kapasitas sama menyusul dibangun di empat lokasi, masing-masing di Pulau Selayar tiga unit, Sulawesi Utara dua unit, dan Nusa Penida, Bali, serta Bangka Belitung, masing-masing satu unit. Mengacu pada kebijakan energi nasional, maka pembangkit listrik tenaga bayu (PLTB) ditargetkan mencapai 250 megawatt (MW) pada tahun 2025.

Pembangkit Listrik Tenaga Nuklir
Energi nuklir akan dikembangkan di Indonesia. Menurut Menteri Energi dan Sumber Daya Mineral (ESDM) Purnomo Yusgiantoro berdasarkan roadmap pengembangan yang disiapkan pemerintah Pembangkit Listrik Tenaga Nuklir (PLTN) mulai dibangun tahun 2016. Sedang tahun 2017 diharapkan mulai bisa beroperasi. Energi nuklir merupakan bagian dari pengembangan energi baru dan terbarukan dalam kebijakan energi di Indonesia. Batubara merupakan bahan bakar utama pembangkit listrik di Indonesia. Selain itu juga dikembangkan energi baru dan terbarukan termasuk energi nuklir. Indonesia memiliki cadangan mineral radioaktif yang tersebar diberbagai lokasi. Di kawasan Kayan, Kalimantan Barat, misalnya, saat ini terdapat cadangan sekitar 24,110 ton yang bisa untuk memproduksi 3 GWh selama 11 tahun. Cadangan lainnya tersebar di Sumatera, Sulawesi serta Papua.
Peran energi nuklir diperkirakan akan sangat penting bersama sumber energi baru dan terbarukan lainnya dalam menjamin pasokan dan keamanan energi listrik di Indonesia. Sebagaimana terjadi diberbagai negara lain pengembangan energi nuklir umumnya diiringi dengan menurunnya kontribusi bahan bakar lain untuk pembangkit listrik.
Perkembangan energi nuklir untuk pembangkit listrik mengalami perkembangan yang cepat dalam beberapa tahun belakangan. Saat ini sedikitnya terdapat sekitar 426 PLTN yang dioperasikan diberbagai negara. Amerika, Jepang dan Korea merupakan negara yang membangun PLTN dalam jumlah besar. Selain itu PLTN juga dikembangkan oleh India, China, Brasil, dan Finlandia.

Berikut ini adalah keuntungan dan kerugian mengunakan energi nuklir:
Keuntungan PLTN dibandingkan dengan pembangkit daya utama lainnya adalah:
1. Tidak menghasilkan emisi gas rumah kaca (selama operasi normal) - gas rumah kaca hanya dikeluarkan ketika Generator Diesel Darurat dinyalakan dan hanya sedikit menghasilkan gas)
2. Tidak mencemari udara - tidak menghasilkan gas-gas berbahaya sepert karbon monoksida, sulfur dioksida, aerosol, mercury, nitrogen oksida, partikulate atau asap fotokimia
3. Sedikit menghasilkan limbah padat (selama operasi normal)
4. Biaya bahan bakar rendah - hanya sedikit bahan bakar yang diperlukan
5. Ketersedian bahan bakar yang melimpah - sekali lagi, karena sangat sedikit bahan bakar yang diperlukan
6. Baterai nuklir - (lihat SSTAR)




Berikut ini berberapa hal yang menjadi kekurangan PLTN:
1. Risiko kecelakaan nuklir - kecelakaan nuklir terbesar adalah kecelakaan Chernobyl (yang tidak mempunyai containment building)
2. Limbah nuklir - limbah radioaktif tingkat tinggi yang dihasilkan dapat bertahan hingga ribuan tahun
Pembangkit Listrik Tenaga Arus Sungai/Laut
PLTA yang umum kita ketahui adalah pembangkit listrik yang energi penggerak utamanya bersumber dari air yang dibuat sedemikian hingga agar mampu menggerakan turbin. PLTA merupakan jenis pembangkit sumber energi terbarukan dan tanpa menimbulkan emisi. Tetapi untuk skala besar masih banyak masalah-masalah yang harus dihadapi dari pengembangan PLTA ini. Permasahan yang sering timbul adalah, besarnya biaya untuk pembangunan dan pemeliharaan PLTA,kebutuhan lahan yang sangat luas dan efek samping yang diakibatkan terhadap lingkungan juga menjadi kendala.
Karena alasan tersebut, akhir-akhir ini banyak yang mengembangkan alternatif teknologi baru sistem pembangkit listrik yang menggunakan tenaga air untuk mengahasilkan enegi listrik, salah satunya adalah Pembangkit Listrik Tenaga Arus Sungai/Laut.
Menurut beberapa sumber yang dibaca, arus sungai mempunyai kelebihan dibandingkan dengan angin ataupun matahari yang cenderung lebih dipengaruhi oleh cuaca, sementara arus sungai mempunyai aliran yang tetap dan tidak banyak mengalami perubahan hingga ratusan tahun. Selain itu, air mempunyai berat jenis yang lebih besar dibandingkan dengan udara, dan hal itu berarti bahwa potensi energi yang bisa dihasilkan 321.800 km sungai-sungai besar di dunia lebih besar dibandingkan dengan energi yang bersumber dari angin.
Berbeda dengan arus sungai, arus laut juga mempunyai kandungan energi yang bisa dimanfaatkan sebagai energi terbarukan. Namun arus laut cenderung mengalami perputaran atau biasa disebut juga arus putar sehingga cenderung pula untuk merusak. Pada selat, teluk dan tempat-tempat lainnya dimana arus laut mengalami penyempitan berupa bottle neck, arus laut akan sangat kuat sehinga sangat potensial untuk dimanfaatkan energinya.

KESIMPULAN
Dari pembahasan mengenai pembangkit tenaga listrik dapat disimpulkan bahwa suatu pembangkit tenaga listrik tidak hanya dibuat karena aspek kebutuhan, namun juga harus dilihat dari aspek lingkungannya. Karena, hal ini berdampak sangat besar terhadap lingkungan. Semua hal harus benar-benar dihitung dari segala aspek. Dan dari semua pembangkit tenaga listrik yang ada, masing-masing memiliki kekurangan dan kelebihan sendiri.

PENGHITUNGAN ENERGI LISTRIK

1. Energi Listrik
Energi listrik merupakan suatu bentuk energi yang berasal dari sumber arus. Energi listrik dapat diubah menjadi bentuk lain, misalnya:
• Energi listrik menjadi energi kalor / panas, contoh: seterika, solder, dan kompor listrik.
• Energi listrik menjadi energi cahaya, contoh: lampu.
• Energi listrik menjadi energi mekanik, contoh: motor listrik.
• Energi listrik menjadi energi kimia, contoh: peristiwa pengisian accu, peristiwa penyepuhan (peristiwa melapisi logam dengan logam lain).

Jika arus listrik mengalir pada suatu penghantar yang berhambatan R, maka sumber arus akan mengeluarkan energi pada penghantar yang bergantung pada:
• Beda potensial pada ujung-ujung penghantar (V).
• Kuat arus yang mengalir pada penghantar (i).
• Waktu atau lamanya arus mengalir (t).

Berdasarkan pernyataan di atas, dan karena harga V = R.i, maka persamaan energi listrik dapat dirumuskan dalam bentuk :
W = V.i.t
= (R.i).i.t
W = i^2.R.t (dalam satuan watt-detik)

dan karena i = V/R, maka persamaan energi listrik dapat pula dirumuskan dengan:
W = i^2.R.t
= (V/R^2.R.t
W = V^2.t/R (dalam satuan watt-detik)

Keuntungan menggunakan energi listrik:
a. Mudah diubah menjadi energi bentuk lain.
b. Mudah ditransmisikan.
c. Tidak banyak menimbulkan polusi/ pencemaran lingkungan.

Energi listrik yang dilepaskan itu tidak hilang begitu saja, melainkan berubah menjadi panas (kalor) pada penghantar. Besar energi listrik yang berubah menjadi panas (kalor) dapat dirumuskan:
Q = 0,24 V i t……kalori
Q = 0,24 i^2 R t…..kalori
Q = 0,24 V^2.t/R….kalori

Jika V, i, R, dan t masing-masing dalam volt, ampere, ohm, dan detik, maka panas (kalor) dinyatakan dalam kalori.

Konstanta 0,24 didapat dari percobaan joule, Di dalam percobaannya Joule menggunakan rangkaian alat yang terdiri atas kalorimeter yang berisi air serta penghantar yang berarus listrik. Jika dalam percobaan arus listrik dialirkan pada penghantar dalam waktu t detik, ternyata kalor yang terjadi karena arus listrik berbanding lurus dengan:
a. Beda potensial antara kedua ujung kawat penghantar (V)
b. Kuat arus yang melalui kawat penghantar (i)
c. Waktu selama arus mengalir (t).

dan hubungan ketiganya ini dikenal sebagai "hukum Joule"

Karena energi listrik 1 joule berubah menjadi panas (kalor) sebesar 0,24 kalori. Jadi kalor yang terjadi pada penghantar karena arus listrik adalah:
Q = 0,24 V.i.t kalori

Daya Listrik
Daya listrik adalah banyaknya energi tiap satuan waktu dimana pekerjaan sedang berlangsung atau kerja yang dilakukan persatuan waktu. Dari definisi ini, maka daya listrik (P) dapat dirumuskan:
Daya = Energi/waktu
P =W/t
P = V.i.t/t
= V.i
P = i^2 R
P = V^2/R (dalam satuan volt-ampere, VA)

Satuan daya listrik :
a. watt (W) = joule/detik
b. kilowatt (kW): 1 kW = 1000 W.

Dari satuan daya maka muncullah satuan energi lain yaitu:
Jika daya dinyatakan dalam kilowatt (kW) dan waktu dalam jam, maka satuan energi adalah kilowatt jam atau kilowatt-hour (kWh).
1 kWh = 36 x 105 joule

Dalam satuan internasional (SI), satuan daya adalah watt (W) atau setara Joule per detik (J/sec). Daya listrik juga diekspresikan dalam watt (W) atau kilowatt (kW). Konversi antara satuan HP dan watt, dinyatakan dengan formula sebagai berikut:

1 HP = 746 W = 0,746 kW
1kW = 1,34 HP

Sedangkan menurut standar Amerika (US standard), daya dinyatakan dalam satuan Hourse Power (HP)atau (ft)(lb)/(sec).

Pemanfaatan Energi Listrik

Di antara peralatan listrik di rumah anda, anda mungkin mempunyai pengering rambut, beberapa lampu, pesawat TV, stereo, oven microwave, kulkas dan kompor listrik. Masing-masing mengubah energi listrik menjadi energi bentuk lain, misalnya energi cahaya, energi kinetik, energi bunyi, atau energi panas. Berapa besarnya energi listrik yang diubah menjadi energi bentuk lain? dan berapa lajunya? Energi yang di catu pada rangkaian dapat digunakan dengan beberapa cara yang berbeda. Motor merubah energi listrik menjadi energi mekanik. Lampu listrik merubah energi listrik menjadi cahaya. Sayangnya tidak semua energi yang diberikan ke motor atau ke lampu dapat dimanfaatkan. Cahaya, khususnya cahaya lampu pijar menimbulkan panas. Motor terlalu panas untuk disentuh. Dalam setiap kasus, ada sejumlah energi yang diubah menjadi panas.

Sabtu, 24 April 2010

Pembelajaran Matematika Realistik ( RME)

Abstrak:

Dalam pembelajaran matematika selama ini, dunia nyata hanya dijadikan tempat mengaplikasikan konsep. Siswa mengalami kesulitan matematika di kelas. Akibatnya, siswa kurang menghayati atau memahami konsep-konsep matematika, dan siswa mengalami kesulitan untuk mengaplikasikan matematika dalam kehidupan sehari-hari.
Salah satu pembelajaran matematika yang berorientasi pada matematisasi pengalaman sehari-hari (mathematize of everyday experience) dan menerapkan matematika dalam kehidupan sehari-hari adalah pembelajaran Matematika Realistik (MR).

Karakteristik RME adalah menggunakan konteks “dunia nyata”, model-model, produksi dan konstruksi siswa, interaktif, dan keterkaitan (intertwinment). Berkaitan dengan hal itu, tulisan ini bertujuan untuk memaparkan secara teoretis pembelajaran matematika realistik, pengimplementasian pembelajaran MR, serta kaitan antara pembelajaran MR dengan pengertian. Pembelajaran Matematika Realistik memberikan kesempatan kepada siswa untuk menemukan kembali dan merekonstruksi konsep-konsep matematika, sehingga siswa mempunyai pengertian kuat tentang konsep-konsep matematika. Dengan demikian, pembelajaran Matematika Realistik akan mempunyai kontribusi yang sangat tinggi dengan pengertian siswa.

Kata kunci: matematika realistik, dunia nyata, rekonstruksi konsep matematika, model-model, interaktif.

1. Pendahuluan

Salah satu karakteristik matematika adalah mempunyai objek yang bersifat abstrak. Sifat abstrak ini menyebabkan banyak siswa mengalami kesulitan dalam matematika. Prestasi matematika siswa baik secara nasional maupun internasional belum menggembirakan. Third International Mathematics and Science Study (TIMSS) melaporkan bahwa rata-rata skor matematika siswa tingkat 8 (tingkat II SLTP) Indonesia jauh di bawah rata-rata skor matematika siswa internasional dan berada pada ranking 34 dari 38 negara (TIMSS,1999). Rendahnya prestasi matematika siswa disebabkan oleh faktor siswa yaitu mengalami masalah secara komprehensif atau secara parsial dalam matematika.

Selain itu, belajar matematika siswa belum bermakna, sehingga pengertian siswa tentang konsep sangat lemah.Jenning dan Dunne (1999) mengatakan bahwa, kebanyakan siswa mengalami kesulitan dalam mengaplikasikan matematika ke dalam situasi kehidupan real. Hal lain yang menyebabkan sulitnya matematika bagi siswa adalah karena pembelajaran matematika kurang bermakna. Guru dalam pembelajarannya di kelas tidak mengaitkan dengan skema yang telah dimiliki oleh siswa dan siswa kurang diberikan kesempatan untuk menemukan kembali dan mengkonstruksi sendiri ide-ide matematika. Mengaitkan pengalaman kehidupan nyata anak dengan ide-ide matematika dalam pembelajaran di kelas penting dilakukan agar pembelajaran bermakna (Soedjadi, 2000; Price,1996; Zamroni, 2000).

Menurut Van de Henvel-Panhuizen (2000), bila anak belajar matematika terpisah dari pengalaman mereka sehari-hari maka anak akan cepat lupa dan tidak dapat mengaplikasikan matematika Berdasarkan pendapat di atas, pembelajaran matematika di kelas ditekankan pada keterkaitan antara konsep-konsep matematika dengan pengalaman anak sehari-hari. Selain itu, perlu menerapkan kembali konsep matematika yang telah dimiliki anak pada kehidupan sehari-hari atau pada bidang lain sangat penting dilakukan.

Salah satu pembelajaran matematika yang berorientasi pada matematisasi pengalaman sehari-hari (mathematize of everyday experience) dan menerapkan matematika dalam kehidupan sehari-hari adalah pembelajaran Matematika Realistik (MR).

Pembelajaran MR pertama kali dikembangkan dan dilaksanakan di Belanda dan dipandang sangat berhasil untuk mengembangkan pengertian siswa.

Tulisan ini bertujuan untuk memaparkan secara teoretis pembelajaran matematika realistik, pengimplementasian pembelajaran MR, serta kaitan antara pembelajaran MR dengan pengertian.

2. Kajian Teori

2.1 Realistic Mathematics Education (RME)

Realistic Mathematics Education (RME) merupakan teori belajar mengajar dalam pendidikan matematika. Teori RME pertama kali diperkenalkan dan dikembangkan di Belanda pada tahun 1970 oleh Institut Freudenthal. Teori ini mengacu pada pendapat Freudenthal yang mengatakan bahwa matematika harus dikaitkan dengan realita dan matematika merupakan aktivitas manusia. Ini berarti matematika harus dekat dengan anak dan relevan dengan kehidupan nyata sehari-hari. Matematika sebagai aktivitas manusia berarti manusia harus diberikan kesempatan untuk menemukan kembali ide dan konsep matematika dengan bimbingan orang dewasa (Gravemeijer, 1994). Upaya ini dilakukan melalui penjelajahan berbagai situasi dan persoalan-persoalan “realistik”. Realistik dalam hal ini dimaksudkan tidak mengacu pada realitas tetapi pada sesuatu yang dapat dibayangkan oleh siswa (Slettenhaar, 2000). Prinsip penemuan kembali dapat diinspirasi oleh prosedur-prosedur pemecahan informal, sedangkan proses penemuan kembali menggunakan konsep matematisasi.

Dua jenis matematisasi diformulasikan oleh Treffers (1991), yaitu matematisasi horisontal dan vertikal.

Contoh matematisasi horisontal adalah pengidentifikasian, perumusan, dan penvisualisasi masalah dalam cara-cara yang berbeda, dan pentransformasian masalah dunia real ke masalah matematik.

Contoh matematisasi vertikal adalah representasi hubungan-hubungan dalam rumus, perbaikan dan penyesuaian model matematik, penggunaan model-model yang berbeda, dan penggeneralisasian. Kedua jenis matematisasi ini mendapat perhatian seimbang, karena kedua matematisasi ini mempunyai nilai sama (Van den Heuvel-Panhuizen, 2000) .

Berdasarkan matematisasi horisontal dan vertikal, pendekatan dalam pendidikan matematika dapat dibedakan menjadi empat jenis yaitu mekanistik, emperistik, strukturalistik, dan realistik.

Pendekatan mekanistik merupakan pendekatan tradisional dan didasarkan pada apa yang diketahui dari pengalaman sendiri (diawali dari yang sederhana ke yang lebih kompleks). Dalam pendekatan ini manusia dianggap sebagai mesin. Kedua jenis matematisasi tidak digunakan.

Pendekatan emperistik adalah suatu pendekatan dimana konsep-konsep matematika tidak diajarkan, dan diharapkan siswa dapat menemukan melalui matematisasi horisontal.

Pendekatan strukturalistik merupakan pendekatan yang menggunakan sistem formal, misalnya pengajaran penjumlahan cara panjang perlu didahului dengan nilai tempat, sehingga suatu konsep dicapai melalui matematisasi vertikal.

Pendekatan realistik adalah suatu pendekatan yang menggunakan masalah realistik sebagai pangkal tolak pembelajaran. Melalui aktivitas matematisasi horisontal dan vertikal diharapkan siswa dapat menemukan dan mengkonstruksi konsep-konsep matematika.

2.2 Karakteristik RME

Karakteristik RME adalah menggunakan: konteks “dunia nyata”, model-model, produksi dan konstruksi siswa, interaktif, dan keterkaitan (intertwinment) (Treffers,1991; Van den Heuvel-Panhuizen,1998).

2.2.1 Menggunakan Konteks “Dunia Nyata”

Gambar berikut menunjukkan dua proses matematisasi yang berupa siklus di mana “dunia nyata” tidak hanya sebagai sumber matematisasi, tetapi juga sebagai tempat untuk mengaplikasikan kembali matematika. Gambar 1 Konsep Matematisasi (De Lange,1987) Dalam RME, pembelajaran diawali dengan masalah kontekstual (“dunia nyata”), sehingga memungkinkan mereka menggunakan pengalaman sebelumnya secara langsung. Proses penyarian (inti) dari konsep yang sesuai dari situasi nyata dinyatakan oleh De Lange (1987) sebagai matematisasi konseptual. Melalui abstraksi dan formalisasi siswa akan mengembangkan konsep yang lebih komplit. Kemudian, siswa dapat mengaplikasikan konsep-konsep matematika ke bidang baru dari dunia nyata (applied mathematization). Oleh karena itu, untuk menjembatani konsep-konsep matematika dengan pengalaman anak sehari-hari perlu diperhatikan matematisi pengalaman sehari-hari (mathematization of everyday experience) dan penerapan matematikan dalam sehari-hari (Cinzia Bonotto, 2000)

2.2.2 Menggunakan Model-model (Matematisasi)

Istilah model berkaitan dengan model situasi dan model matematik yang dikembangkan oleh siswa sendiri (self developed models). Peran self developed models merupakan jembatan bagi siswa dari situasi real ke situasi abstrak atau dari matematika informal ke matematika formal. Artinya siswa membuat model sendiri dalam menyelesaikan masalah. Pertama adalah model situasi yang dekat dengan dunia nyata siswa. Generalisasi dan formalisasi model tersebut akan berubah menjadi model-of masalah tersebut. Melalui penalaran matematik model-of akan bergeser menjadi model-for masalah yang sejenis. Pada akhirnya, akan menjadi model matematika formal.

2.2.3 Menggunakan Produksi dan Konstruksi

Streefland (1991) menekankan bahwa dengan pembuatan “produksi bebas” siswa terdorong untuk melakukan refleksi pada bagian yang mereka anggap penting dalam proses belajar. Strategi-strategi informal siswa yang berupa prosedur pemecahan masalah kontekstual merupakan sumber inspirasi dalam pengembangan pembelajaran lebih lanjut yaitu untuk mengkonstruksi pengetahuan matematika formal.

2.2.4 Menggunakan Interaktif

Interaksi antarsiswa dengan guru merupakan hal yang mendasar dalam RME. Secara eksplisit bentuk-bentuk interaksi yang berupa negosiasi, penjelasan, pembenaran, setuju, tidak setuju, pertanyaan atau refleksi digunakan untuk mencapai bentuk formal dari bentuk-bentuk informal siswa.

2.2.5 Menggunakan Keterkaitan (Intertwinment)

Dalam RME pengintegrasian unit-unit matematika adalah esensial. Jika dalam pembelajaran kita mengabaikan keterkaitan dengan bidang yang lain, maka akan berpengaruh pada pemecahan masalah. Dalam mengaplikasikan matematika, biasanya diperlukan pengetahuan yang lebih kompleks, dan tidak hanya aritmetika, aljabar, atau geometri tetapi juga bidang lain.

3. Pembahasan

3.1 Matematika Realistik (MR)

Matematika Realistik (MR) yang dimaksudkan dalam hal ini adalah matematika sekolah yang dilaksanakan dengan menempatkan realitas dan pengalaman siswa sebagai titik awal pembelajaran. Masalah-masalah realistik digunakan sebagai sumber munculnya konsep-konsep matematika atau pengetahuan matematika formal. Pembelajaran MR di kelas berorientasi pada karakteristik-karakteristik RME, sehingga siswa mempunyai kesempatan untuk menemukan kembali konsep-konsep matematika atau pengetahuan matematika formal. Selanjutnya, siswa diberi kesempatan mengaplikasikan konsep-konsep matematika untuk memecahkan masalah sehari-hari atau masalah dalam bidang lain.

Pembelajaran ini sangat berbeda dengan pembelajaran matematika selama ini yang cenderung berorientasi kepada memberi informasi dan memakai matematika yang siap pakai untuk memecahkan masalah-masalah.

Karena matematika realistik menggunakan masalah realistik sebagai pangkal tolak pembelajaran maka situasi masalah perlu diusahakan benar-benar kontektual atau sesuai dengan pengalaman siswa, sehingga siswa dapat memecahkan masalah dengan cara-cara informal melalui matematisasi horisontal. Cara-cara informal yang ditunjukkan oleh siswa digunakan sebagai inspirasi pembentukan konsep atau aspek matematiknya ditingkatkan melalui matematisasi vertikal. Melalui proses matematisasi horisontal-vertikal diharapkan siswa dapat memahami atau menemukan konsep-konsep matematika (pengetahuan matematika formal).

3.2 Pembelajaran Matematika Realistik (MR)

Menurut Pandangan Konstruktivis Pembelajaran matematika menurut pandangan konstruktivis adalah memberikan kesempatan kepada siswa untuk mengkonstruksi konsep-konsep/prinsip-prinsip matematika dengan kemampuan sendiri melalui proses internalisasi. Guru dalam hal ini berperan sebagai fasilitator.

Menurut Davis (1996), pandangan konstruktivis dalam pembelajaran matematika berorientasi pada:

(1) pengetahuan dibangun dalam pikiran melalui proses asimilasi atau akomodasi,

(2) dalam pengerjaan matematika, setiap langkah siswa dihadapkan kepada apa,

(3) informasi baru harus dikaitkan dengan pengalamannya tentang dunia melalui suatu kerangka logis yang mentransformasikan, mengorganisasikan, dan menginterpretasikan pengalamannya, dan

(4) pusat pembelajaran adalah bagaimana siswa berpikir, bukan apa yang mereka katakan atau tulis.

Konstruktivis ini dikritik oleh Vygotsky, yang menyatakan bahwa siswa dalam mengkonstruksi suatu konsep perlu memperhatikan lingkungan sosial. Konstruktivisme ini oleh Vygotsky disebut konstruktivisme sosial (Taylor, 1993; Wilson, Teslow dan Taylor,1993; Atwel, Bleicher & Cooper, 1998).

Ada dua konsep penting dalam teori Vygotsky (Slavin, 1997), yaitu Zone of Proximal Development (ZPD) dan scaffolding.

Zone of Proximal Development (ZPD) merupakan jarak antara tingkat perkembangan sesungguhnya yang didefinisikan sebagai kemampuan pemecahan masalah secara mandiri dan tingkat perkembangan potensial yang didefinisikan sebagai kemampuan pemecahan masalah di bawah bimbingan orang dewasa atau melalui kerjasama dengan teman sejawat yang lebih mampu.

Scaffolding merupakan pemberian sejumlah bantuan kepada siswa selama tahap-tahap awal pembelajaran, kemudian mengurangi bantuan dan memberikan kesempatan untuk mengambil alih tanggung jawab yang semakin besar setelah ia dapat melakukannya (Slavin, 1997). Scaffolding merupakan bantuan yang diberikan kepada siswa untuk belajar dan memecahkan masalah. Bantuan tersebut dapat berupa petunjuk, dorongan, peringatan, menguraikan masalah ke dalam langkah-langkah pemecahan, memberikan contoh, dan tindakan-tindakan lain yang memungkinkan siswa itu belajar mandiri.

Pendekatan yang mengacu pada konstruktivisme sosial (filsafat konstruktivis sosial) disebut pendekatan konstruktivis sosial. Filsafat konstruktivis sosial memandang kebenaran matematika tidak bersifat absolut dan mengidentifikasi matematika sebagai hasil dari pemecahan masalah dan pengajuan masalah (problem posing) oleh manusia (Ernest, 1991). Dalam pembelajaran matematika, Cobb, Yackel dan Wood (1992) menyebutnya dengan konstruktivisme sosio (socio-constructivism). Siswa berinteraksi dengan guru, dengan siswa lainnya dan berdasarkan pada pengalaman informal siswa mengembangkan strategi-strategi untuk merespon masalah yang diberikan. Karakteristik pendekatan konstruktivis sosio ini sangat sesuai dengan karakteristik RME.

Konsep ZPD dan Scaffolding dalam pendekatan konstruktivis sosio, di dalam pembelajaran MR disebut dengan penemuan kembali terbimbing (guided reinvention). Menurut Graevenmeijer (1994) walaupun kedua pendekatan ini mempunyai kesamaan tetapi kedua pendekatan ini dikembangkan secara terpisah.

Perbedaan keduanya adalah pendekatan konstruktivis sosio merupakan pendekatan pembelajaran yang bersifat umum, sedangkan pembelajaran MR merupakan pendekatan khusus yaitu hanya dalam pembelajaran matematika.

3.3 Bagaimana Implementasi Pembelajaran MR?

Untuk memberikan gambaran tentang implementasi pembelajaran MR, berikut ini diberikan contoh pembelajaran pecahan di sekolah dasar (SD). Pecahan di SD diinterpretasi sebagai bagian dari keseluruhan. Interpretasi ini mengacu pada pembagian unit ke dalam bagian yang berukuran sama. Dalam hal ini sebagai kerangka kerja siswa adalah daerah, panjang, dan model volume. Bagian dari keseluruhan juga dapat diinterpretasi pada ide pempartisian suatu himpunan dari objek diskret.

Dalam pembelajaran, sebelum siswa masuk pada sistem formal, terlebih dahulu siswa dibawa ke “situasi” informal. Misalnya, pembelajaran pecahan dapat diawali dengan pembagian menjadi bagian yang sama (misalnya pembagian kue) sehingga tidak terjadi loncatan pengetahuan informal anak dengan konsep-konsep matematika (pengetahuan matematika formal).

Setelah siswa memahami pembagian menjadi bagian yang sama, baru diperkenalkan istilah pecahan. Ini sangat berbeda dengan pembelajaran konvensional (bukan MR) di mana siswa sejak awal dicekoki dengan istilah pecahan dan beberapa jenis pecahan.

Jadi, pembelajaran MR diawali dengan fenomena, kemudian siswa dengan bantuan guru diberikan kesempatan menemukan kembali dan mengkonstruksi konsep sendiri. Setelah itu, diaplikasikan dalam masalah sehari-hari atau dalam bidang lain (lihat gambar 02).


Gambar 2 Penemuan dan Pengkonstruksian konsep
(Diadopsi dari Van Reeuwijk,1995)

3.4 Kaitan antara Pembelajaran MR dengan Pengertian

Kalau kita perhatikan para guru dalam mengajar matematika senantiasa terlontar kata “bagaimana, apa mengerti ?” Siswa pun biasanya buru-buru menjawab mengerti atau sudah. Siswa sering mengeluh seperti berikut, “Pak … pada saat di kelas saya mengerti penjelasan Bapak, tetapi begitu sampai di rumah saya lupa”, atau “Pak … pada saat di kelas saya mengerti contoh yang Bapak berikan , tetapi saya tidak bisa menyelesaikan soal-soal latihan” Apa yang dialami oleh siswa pada ilustrasi di atas menunjukkan bahwa siswa belum mengerti atau belum mempunyai pengetahuan konseptual. Siswa yang mengerti konsep atau mempunyai pengetahuan konseptual dapat menemukan kembali konsep yang mereka lupakan.

Mitzel (1982) mengatakan bahwa, hasil belajar siswa secara langsung dipengaruhi oleh pengalaman siswa dan faktor internal. Pengalaman belajar siswa dipengaruhi oleh unjuk kerja guru. Bila siswa dalam belajarnya bermakna atau terjadi kaitan antara informasi baru dengan jaringan representasi maka siswa akan mendapatkan suatu pengertian. Mengembangkan pengertian merupakan tujuan pengajaran matematika. Karena tanpa pengertian orang tidak dapat mengaplikasikan prosedur, konsep, ataupun proses.

Dengan kata lain, matematika dimengerti bila representasi mental adalah bagian dari jaringan representasi (Hiebert dan Carpenter , 1992). Umumnya, sejak anak-anak orang telah mengenal ide matematika. Melalui pengalamannya dalam kehidupan sehari-hari mereka mengembangkan ide-ide yang lebih kompleks, misalnya tentang bilangan, pola, bentuk, data, ukuran dsb. Anak sebelum sekolah belajar ide matematika secara alamiah. Hal ini menunjukkan bahwa siswa datang ke sekolah bukanlah dengan kepala “kosong” yang siap diisi dengan apa saja.

Pembelajaran di sekolah akan menjadi lebih bermakna bila guru mengaitkan dengan apa yang telah diketahui anak. Pengertian siswa tentang ide matematik dapat dibangun melalui sekolah, jika mereka secara aktif mengaitkan dengan pengetahuan mereka.

Hanna dan Yackel (NCTM, 2000) mengatakan bahwa belajar dengan pengertian dapat ditingkatkan melalui interaksi kelas. Percakapan kelas dan interaksi sosial dapat digunakan untuk memperkenalkan keterkaitan di antara ide-ide dan mengorganisasikan pengetahuan kembali.

Pembelajaran MR memberikan kesempatan kepada siswa untuk menemukan kembali dan mengkonstruksi konsep-konsep matematika berdasarkan pada masalah realistik yang diberikan oleh guru. Situasi realistik dalam masalah memungkinkan siswa menggunakan cara-cara informal untuk menyelesaikan masalah. Cara-cara informal siswa yang merupakan produksi siswa memegang peranan penting dalam penemuan kembali dan pengkonstruksian konsep. Hal ini berarti informasi yang diberikan kepada siswa telah dikaitkan dengan skema (jaringan representasi) anak. Melalui interaksi kelas keterkaitan skema anak akan menjadi lebih kuat sehingga pengertian siswa tentang konsep yang mereka konstruksi sendiri menjadi kuat. Dengan demikian, pembelajaran MR akan mempunyai kontribusi yang sangat tinggi dengan pengertian siswa.

4. Simpulan dan Saran

Berdasarkan uraian di atas, maka sebagai simpulan dapat disampaikan beberapa hal sebagai berikut. Matematika Realistik (MR) merupakan matematika sekolah yang dilaksanakan dengan menempatkan realitas dan pengalaman siswa sebagai titik awal pembelajaran.

Pembelajaran MR menggunakan masalah realistik sebagai pangkal tolak pembelajaran, dan melalui matematisasi horisontal-vertikal siswa diharapkan dapat menemukan dan merekonstruksi konsep-konsep matematika atau pengetahuan matematika formal. Selanjutnya, siswa diberi kesempatan menerapkan konsep-konsep matematika untuk memecahkan masalah sehari-hari atau masalah dalam bidang lain. Dengan kata lain, pembelajaran MR berorientasi pada matematisasi pengalaman sehari-hari (mathematize of everyday experience) dan menerapkan matematika dalam kehidupan sehari-hari (everydaying mathematics), sehingga siswa belajar dengan bermakna (pengertian).

Pembelajaran MR berpusat pada siswa, sedangkan guru hanya sebagai fasilitator dan motivator, sehingga memerlukan paradigma yang berbeda tentang bagaimana siswa belajar, bagaimana guru mengajar, dan apa yang dipelajari oleh siswa dengan paradigma pembelajaran matematika selama ini. Karena itu, perubahan persepsi guru tentang mengajar perlu dilakukan bila ingin mengimplementasikan pembelajaran matematika realistik. Sesuai dengan simpulan di atas, maka disarankan:

(1) kepada pakar atau pencinta pendidikan matematika untuk melakukan penelitian-penelitian yang berorientasi pada pembelajaran MR sehingga diperoleh global theory pembelajaran MR yang sesuai dengan sosial budaya Indonesia, dan

(2) kepada guru-guru matematika untuk mencoba mengimplementasikan pembelajaran MR secara bertahap, misalnya mulai dengan memberikan masalah-masalah realistik untuk memotivasi siswa menyampaikan pendapat.

Pustaka Acuan

Atwel, Bleicher & Cooper.1998. “The Construction of The Social Contex of Mathematics Clasroom : A Sociolonguistic Analysis”. Dalam Journal for Research in Mathematics Education. Vol 29 No.1 January 1998.hal 63-82

Cinzia Bonotto. 2000. Mathematics in and out of school : is it possible connect these contexts ? Exemplification from an activity in primary schools. http://www.nku.edu/~sheffield/bonottopbyd.htm

Cobb,Yackel & Wood.1992.”A Constructivist Alternative to The Representational View of Mind in Mathematics Education”. Dalam Journal for Research in Mathematics Education. Vol.23. No.1 January 1992. hal. 2-33 .

Davis. 1996. “One Very Complete View (Though Only One) of How Children Learn Mathematics ” Dalam Journal for Research in Mathematics Education Vol.27. No.1 January 1996. hal. 100-106

De Lange. 1987. Mathematics Insight and Meaning. OW & OC. Utrecht

Ernest,P. 1991. The Philosopy of Mathematics Education. London :

Falmer Press Gravemeijer. 1994. Developing Realistics Mathematics Education. Freudenthal Institute. Utrecht.

Hiebert,J & Thomas Carpenter. 1992. “Learning and Teaching With Understanding” Handbook of Research on Mathematics Teaching and Learning. New York : Macmillan

Jennings, Sue & R, Dunne.1999. Math Stories,Real Stories, Real-life Stories. http://www.ex.ac.uk/telematics/T3/maths/actar01.htm.

Mitzel, H.E. 1982. Encyclopedia of Educational Research (Fifth Ed). New York : Macmillan NCTM. 2000. Principles and Standards for School Mathematics.USA : NCTM Price,J. 1996. “President’s Report : Bulding Bridges of Mathematical Understanding for All Children” . Dalam Journal for Research in Mathematics Education. Vol.27. No.5 November 1996. hal. 603-608

Soedjadi. 2000. “Nuansa Kurikulum Matematika Sekolah Di Indonesia”. Dalam Majalah Ilmiah Himpunan Matematika Indonesia (Prosiding Konperensi Nasional Matematika X ITB, 17-20 Juli 2000)

Slavin,R. 1997. Educational Psychology Theory and Practice. Fifth Edition.Boston : Allyn and Bacon.

Slettenhaar. 2000. “Adapting Realistic Mathematics Education in the Indonesian Context”. Dalam Majalah Ilmiah Himpunan Matematika Indonesia (Prosiding Konperensi Nasional Matematika X ITB, 17-20 Juli 2000 Streefland,L. 1991. Realistic Mathematics Education in Primary School. Freudenthal Institute.
Utrecht.

Taylor.1993.”Vygotskian Influences in Mathematics Education With Particular Refrences to Attitude Development”. Dalam Jurnal Focus on Learning in Mathematics.Vol 15 No. 2 hal.3-17. TIMSS. 1999. International Student Achievement in Mathematics. http://timss.bc.edu/timss 1999i/pdf/T99i_math_01.pdf

Treffers.1991. “Didactical Background of a Mathematics Program for Primary Education”. Dalam Realistic Mathematics Education in Primary School. Freudenthal Institute. Utrecht.

Van den Heuvel-Panhuizen. 1998. Realistic Mathematics Education Work in Progress. http://www.fi.nl/ ……2000. Mathematics Education in the Netherlands a Guided Tour. http://www.fi.uu.nl/en/indexpulicaties.html.

Van Reeuwijk, Martin. 1995. The Role of Realistic Situations in Developing Tools for Solving Systems of Equations. www.fi.uu.nl/en/indexpublicaties/3781.pdf

Wilson, Teslow, Taylor.1993. “Instruction Design Perspectives on Mathematics Education With Refrences to Vygotsky’s Theory of Social Cognition”. Focus on Learning Problem in Mathematics.Vol 15.No 2 &3. hal. 65-84

Zamroni. 2000. Paradigma Pendidikan Masa Depan. Yogyakarta : Bigraf Publishing

I Gusti Putu Suharta, Dosen Jurusan Pendidikan Matematika IKIP Negeri Singaraja

Sumber: Jurnal Pendidikan dan Kebudayaan Edisi 38, Pusat Data dan Informasi Pendidikan, Balitbang – Depdiknas




copas from : http://zainurie.wordpress.com/2007/04/13/pembelajaran-matematika-realistik-rme/

TUMBUHKAN 10 BUDAYA MALU

1. Malu karena datang terlambat pulang cepat
2. Malu melihat rekan sibuk melakukan aktivitas
3. Malu hanya menuntut hak tidak tahu kewaiban
4. Malu karena kerja selalu salah
5. Malu karena bekerja tidak sesuai dengan aturan
6. Malu karena bekerja tidak berprestasi
7. Malu kerena tugas tidak terlaksana/selesai tepat waktu
8. Malu berprilaku dan bicara tidak sopan
9. Malu tidak bertegur sapa sesama rekan
10. Malu tidak berperan aktif dalam mewujudkan kebersihan dan keindahan lingkungan kantor/ sekolah.

BUDI DAYA PISANG

A. Syarat Tumbuhan
Tanaman pisang dapat tumbuh subur di daerah yang mempunyai ketinggian tidak lebih dari 1000 meter diatas permukaan air laut. Tanah yang cocok adalah tanah kaya humus. Tetapi jika terpaksa dapat juga ditanam ditanah kapur. Sedangkan iklim yang paling cocok adalah iklim tropis. Tanaman pisang banyak memerlukan sinar matahari, namun tanaman pisang juga tidak tahan kekeringan. Sebaliknya, juga tidak tahan air yang berlebihan.

B. Mempersiapkan Lahan
Sabaiknya, tanaman lama dibongkar menyeluruh sampai pada bonggolnya. Setelah pembongkaran seleai kita baru mulai mempersiapkan lahannya. Buatlah lubang dengan ukuran 60x60x60 cm. maksudnya, lebar lubang 60 cm, panjang lubang 60 cm, dan kedalamannya pun 60 cm. jika bibit pisang akan ditanam di kebun khusus, jarak lubang satu dan lubang lain berkisar antara 4 sampai 6 meter.atau dapat disesuaikan dengan jenis pisangnya. Bagi pisang bertajuk besar berjarak 6x6 m2 , pisang bertajuk sedang berjarak 5x5 m2 , dan pisang bertajuk sempit 4x4 m2 . apibila akan ditanam dikebun pekarangan, sebaiknya pisang ditanam berderet dengan jarak sekitar 3 meter saja.

C. Pemilihan Bibit
Untuk mendapat tanaman pisang yang sehat serta buahnya besar-besar, kita perlu mempersiapkan bibit secara cermat. Cirri-ciri bibit yang baik adalah tinggi anaknya sekitar satu sanpai satu setengah meter, berumur empat sampai enam bulan, diambil dari pohon yang telah atau sedang berbuah, daunnya tidak terlalu lebar, dan tidak terserang penyakit. Anakan yang tingginya kurang dari satu meter pun dapat dipergunakan sebagai bibit, tetapi mempunyai kelemahan, yakni terlalu lama berbuah.
Apakah bibit pisang yang dapat ditanam itu hanya berupa anakan saja?
Pertama, kita mengambil bonggol tanaman pisang dewasa, berumur sekitar 7 bulan tetapi belum berbuah. Pengambilan harus berhati-hati agar bonggol tidak sampai rusak. Kedua, batang pisang tersebut kita potong kira-kira 10 cm diatas pangkal bonggolnya. Ketiga, tanah yang menempel pada bonggol dan akarnya dibersihkan secara hati-hati supaya tidak merusak tunas. Keempat, pastikan bahwa bonggol yang akan dijadikan sebagai bibit itu benar-benar sehat. Caranya, potonglah bagian bawah bonggol, lalu ambil bekasnya. Jika bekas potongan berwarna putih berarti, bonggol dalam keadaan sehat, tetapi jika bekas potongan berwarna merah, berarti bonggol itu terserang penyakit. Setelah mendapat kepastian bonggolnya sehat, kemidian bonggol direbus dalam air panas bertemperatur 250C- 500C selama 10 sampai 15 menit.

D. Penanaman
Sebulan sebelum penanaman, dasar lubang kita timbun menggunakan tanah galian. Tanah galian lapisan bawah dimasikkan terlebih dahulu, kemudian tanah lapisan atas dicampur dengan pupuk kandang sebanyak 8-10 kg untuk setiap lubang berukuran 60x60x60 cm3 .Langkah penanamannya adalah sebagai berikut :
1. Lubang tanam yang telah ditimbun kembali dengan tanah dicampur pupuk itu dikuak menggunakan cangkul dengan kedalaman sekitar 25 cm atau disesuaikan besar kecilnya bonggil bibit yang ditanam.
2. Bibit pisang dimasukkan kedalam kuakan tersebut. Perhatikan kedalaman kuakan. Diusahakan agar bonggolnya tertanam penuh, kira-kira 5 cm dibawah permukaan tanah.
3. Jika tanahnya terlalu kering, siramlah dengan iar secukupnya.
4. Usahakan bibit dalam keadaan tegak, kemudian tanah disekitar bibit dipadatkan dengan jalan diinjak-injak.
Penanamannya dapat dilakukan dengan dua cara. Cara pertama, seluruh bonggol ditanam dsalam lubang yang telah dicampur pupuk kandang sebagai pupuk dasar. Setelah sekitar lima bulan, anakan yang tidak diperlukan segera diambil dingan hati-hatimenggunakan cangkul atau linggis agar tidak merusak bibit yang akan dipertahankan hidup. Cara kedua, yaitu dengan memotong-motong bonggol calon bibit. Potontan-potongan lalu disemaikan seperti tanah diuraikan pada cara pembibitan.

E. Pemupukan
Pupuk kandang yang baik adalah pupuk yang telah jadi, yaitu berasal dari kotoran hewan dan sisa-sisa makanannya yang telah bnerubah bentuk menyerupai tanah, berwarna coklat kehitam-hitaman. Pembandingan antara tanah dan pupuk kandang yang akan digunakan untuk menutup lubang lubang utu bagaimana, pak?
Pupuk kandang yang diperlukan untuk menutup sebuah lubang tanam kira-kira sepertiga atau separo dari tanah penutupnya. Jika diukur dengan satuan berat, setiap lubang berukuran 60x60x60 dibutuhkan pupuk kandang 8-10 kg. apabila lubang tanam berukuran 80x80x50 cm dibutuhkan pupuk kandang sebanyak 13-15 kg setiap lubangnya.
Pupuk buatan atau pupuk pabrik yang dapat digunakan berupa 1000 gram (1 kilogram) ZA untuk setiap pohon pertahun. TSP seberat 450 gram setiap pohon pertahun dan 500 gram KCL untuk setiap pohon pertahun. Ketiga pupuk itu dicampur dan diberikan empat kali setahun. Pemberian pertama dilakukan satu bulan setelah bibit ditanam dengan ukuran ¼ bagian dari jmlah keseluruhan atau seberat 488 gram. Tiga bulan berikutnya dilakukan pemupukan kedua dengan ukuran ¼ bagian, dan diulangi lagi setiap tiga bulan, masing-masing dengan ukuran sama. Pemberian pupuk kandang itu dilakukan setiap tiga bulan.

F. Merawat Tanaman Pisang
Cara mempersiapkan lahan sampai npenenaman sudah kami ketahiu. Sekarang mohon dijelaskan sekaligus cara pemeliharaannya. Tanaman pisang tergolong tanaman yang tidak manja. Artinya, tidak memerlukan perawatan khusus. Setiap induk pohon pisang, sebelum buahnya masak biasnya sudah mempunyai beberapa anakan. Kira-kira dua bulan setelah anakan pertama muncul, kemudian disusul anakan kedua, disusul lagi anakan ketiga, dan seterusnya sampai anakan-anakan itu berjejal.
Apabila rumpun pisang susah berumur lima tahun, sebaiknya diremajakan kembali dengan jalan membongkar rumpun. Kemudian membuat lubang baru dan menanam ulang menggunakan bibit terpilih yang sehat dari rumpun lama.
Mengapa batang pisang perlu dibersihkan?. Pelepah pisang dibagian bawah lama-lama akan menguning lalu kering. Agar tampak bersih dan tidak mengganggu anakan dibawahnya, daun-daun yang mongering itu perlu segera disingkirkan. Apabila bunga (jantung pisang) terserang ulat, tetapi tidak disemprot menggunakan insektisida, akibatnya kulit pisang itu nanti tidak mulus (berbintik-bintik hitam). Berikutnya jika jantung pisang dibawah buah terakhir tidak dipotong, akibatnya akan menghambat pertumbuhan buah.

F. Hama dan Penyakit Pohon Pisang
Jinis hama dan penyakit yang sering menyerang pohon pisang, antara lain sebagai berikut :
1. Hama npisang
a. Ulat Daun (Erionota Thrax)
b. Uret dari Jenis Kumbang (Cosmopolites Sordidus)
2. Penyakit TAnaman Pisang
a. Penyakit Bintik Daun
b. Penyakit Cendawan oleh Cendawan Jenis Fusarium
c. Penyakit Layu
d. Penyakit Darah

G. Memanen Pisang
Dari segi umur, ada beberapa jenis pisang, buahnya dapat dipetik sekitar 10 sampai 11 bulan setelah ditanam menggunakan anakan berumur sekitar enam bulan. Tetapi ada juga jenis-jenis pisang, seperti ambon, baru dapat dipetik buahnya antara 13 sampai 14 bulan sesudah anakan yang berumur enam bulan ditanam.
Apabila pisang ditanam dengan bonggol sebagai bibitnya, pada pisang jenis-jenis tertentu, seperti pisang raja, dan pisang susu, baru dapat dipetik buhanya setelah berumur 16 sampai 17 bulan. Untuk pisang ambon yang ditanam bonggolnya baru dapat dipetik buahnya setelah berumur sekitar 18 sampai 19 bulan. Untuk mempercepat menguningnya buah dapat dipergunakan pengomposan dan peragian. Pengomposan dan peragian mengakibatkan pisang tidak tahan lama disimpan. Rasa dan aromanya sedikit berbeda disbanding pisang yang masak secara alami.

Hubungan Antara Kalor Dengan Energi Listrik

Kalor merupakan bentuk energi maka dapat berubah dari satu bentuk kebentuk yang lain. Berdasarkan Hukum Kekekalan Energi maka energi listrik dapat berubah menjadi energi kalor dan juga sebaliknya energi kalor dapat berubah menjadi energi listrik. Dalam pembahasan ini hanya akan diulas tentang hubungan energi listrik dengan energi kalor. Alat yang digunakan mengubah energi listrik menjadi energi kalor adalah ketel listrik, pemanas listrik, dll.

Besarnya energi listrik yang diubah atau diserap sama dengan besar kalor yang dihasilkan. Sehingga secara matematis dapat dirumuskan.
W = Q

Kita ketahui bahwa

Q = m.c. (t2 - t1)

Sehingga dapat didapatkan persamaan sebagai berikut :

I.R.I.t = m.c.(t2 - t1)

Dimana :
I = kuat arus listrik (A)
R = Hambatan (ohm)
t = waktu yang dibutuhkan (sekon)
m = massa (kg)
c = kalor jenis (J/ kg C)
t1 = suhu mula - mula (C)
t2 = suhu akhir (C)

Untuk menghitung energi listrik digunakan persamaan sebagai berikut :

W = P.t

Dimana :
W = energi listrik (J)
P = daya listrik (W)
t = waktu yang diperlukan (s)
Bila rumus kalor yang digunakan adalah Q = m.c.(t2 - t1) maka diperoleh persamaan ;

P.t = m.c.(t2 - t1)